HOME > 紫 > Maxima ラ<
Maxima ラ<
腟贋逸2006-1-16(Mon)
Maxima ゃ潟鴻若帥c<c<≪c筝罩g∈吾腱篏帥cCLISP 2.32 筝у Maxima 5.9.1
筝綽膣剛
Mathematica 篏帥c篏薊医茹cс薊Maxima 純сGPL 冴絽
Maxima 綣若吾http://maxima.sourceforge.net/
莎桁
激с maxima ц儀GUI ゃ潟帥若сゃ鴻ゃ潟鴻若 xmaxima ц儀
ュ緇 ; 鐚祉潟鰹ゃ帥若潟若с薈祉潟 $ 篏帥阪吟с
祉激с潟腟篋 quit(); с
潟 (%iN) N倶謂ゃ阪 (%oN) ゃ緇с篏帥cсс%i3 筝綺膵違菴絎茵''%i3; 違с'' 激潟違若若激с潟篋ょ翫ュ絎茵劫ャ %; 違
maxima 紊ф絖絨絖阪ャ腟莨若翠∽違絨絖腟莨若水違 %e, %pi 綵≪鐚九丈違綺鐚
羝箙ゃ +, -, *, /膣箙 ^ 障 **綛恰号鴻≧c鐚ゃ障若祉鐚 sqrt()障箙羈絽吾 * ц;憗違a b a * b
1/3; ュ 1/3 菴1/3, numer; ュ .3333333333333333 緇鐚<違筝罅違遺拭с鐚
ュц儀肢儀
Maxima 医ュ障腮紊綵≪腟菴
(%i1) x + y; (%o1) y + x (%i2) y + x; (%o2) y + x (%i3) 1 + 2; (%o3) 3 (%i4) 2*x + 3*x; (%o4) 5 x
筝鴻綣絮莎激
(%i7) (x + y)^2; 2 (%o7) (y + x) (%i9) 1/a + 1/b; 1 1 (%o8) - + - b a (%i9) x^2 - 2*x +1; 2 (%o9) x - 2 x + 1
expand () rat () ratsimp () factor () 膈腓榊紊綵≪с
(%i10) expand ((x + y)^2); 2 2 (%o10) y + 2 x y + x (%i11) rat (1/a+ 2/b); b + a (%o11) ----- a b (%i12) factor (x^2 - 2*x +1); 2 (%o12) (x - 1)
ゃ蚊綵鐚assingment鐚
n: 1; с激潟 n 1 蚊綵
ゃ蚊綵激潟荅箴<ゃ菴鐚ゃ蚊綵違激潟菴鐚
(%i1) n: 1; (%o1) 1 (%i2) n; (%o2) 1
ゃ蚊綵激潟ュ綣筝篏帥c翫激潟眼ц箴<ゃ臀
(%i3) m: n + 1; (%o3) 2 (%i4) m; (%o4) 2
c n ゃ 3 紊m ゃ篁ュ紊
(%i5) n: 3; (%o5) 3 (%i6) m; (%o6) 2
激潟 n ゃ蚊綵 properties (n); 腟 VALUE 憗
remvalue (n); сn 蚊綵ゃゃ
remvalue (all); с若吟激潟蚊綵ゃ鴻ゃ
kill(n); с激潟 n ゃkill (all) с若吟篏鴻激潟ゃ
ev ()
激潟ゃ蚊綵с違医ゃ蚊綵с翫激潟荅箴<ゃ菴сゃ荅箴<с
(%i1) k: x + y; (%o1) y + x (%i2) k; (%o2) y + x (%i3) x: 3; (%o3) 3 (%i4) y: 7; (%o4) 7 (%i5) k; (%o5) y + x
激潟蚊綵ゃ荅箴<翫ev ()
(%i6) ev(k); (%o6) 10
篁絎
筝篁絎若違declare () 茵憗鴻 assume () 茵憗鴻
declare
declare (n, integer); сn 贋違с絎h腟激潟 n 贋違違腴ゃexpand () 腟綵演帥
(%i1) expand ((x * y)^n); n (%o1) (x y) (%i2) declare (n, integer); (%o2) DONE (%i3) expand ((x * y)^n); n n (%o3) x y
featurep(n, integer); n 贋違違腴ャс
facts (n); Database Info篁ヤ鴻荀膣 KIND (n, INTEGER) 障facts (); n 篁ュ紊違絲障句茵腓冴
properties (n); 腟Database Info 篁ヤ KIND (n, INTEGER) 憗腆肴с
(%i4) featurep (n, integer); (%o4) TRUE (%i5) facts (n); (%o5) [KIND(n, INTEGER)] (%i6) properties (n); (%o6) [Database Info, KIND(n, INTEGER)]
declare хс違 features; хャс
n 贋違違腴c絎 n ゃ贋違с integerp (n) FALSE
remove (n, integer); сn 贋違違ゃс
remove (all,integer); с鴻激潟贋違違ゃс
assume
assume (n > 0); сn 0 紊с篁絎с
(%i11) abs (n); (%o11) ABS(n) (%i12) assume (n > 0); (%o12) [n > 0] (%i13) abs (n); (%o13) n
facts (n) 腟筝 n > 0 障сャсfacts () 鴻 assume declare 菴
forget (n > 0) с篁絎 n > 0 ゃсforget (all) с鴻 assume ゃ
∽医臂
f(x) := x + 1; с激潟 f ∽医臂ャс
f ∽医臂ゃ筝≧鴻ャсf 篏帥潟潟鴻c篏帥
(%i1) f : 10; (%o1) 10 (%i2) f(x) := x * 2; (%o2) f(x) := x 2 (%i3) f; (%o3) 10 (%i4) f(3); (%o4) 6 (%i5) f(f); (%o5) 20
fundef(f); ч∽ f 絎臂荀сdispfun(f, g); ч∽ f ∽ g 絎臂dispfun(all) с鴻若狗∽医臂荀с
∽医臂ャ f 絲障 properties (f); 茵FUNCTION 荀膣c腆肴с
remove (f, function); сf ∽医臂ゃс
= equal()
筝 Maxima с= 絖鐚鐚鐚鐚syntactic equality鐚equal (m, n) m, n 筝紊違膀蚊c m n 膈is () 綏腆冴
is () 綣у = х違綣臀翫勈昇綏莨冴絖≪с is () TRUE 菴
is () 綣у equal (m, n) 臀翫m n 筝障紊違膀蚊c絽吾 m n 膈翫 is () TRUE 菴
(%i1) is( (x+1)^2 = x^2 + 2*x +1); (%o1) FALSE (%i2) is( expand((x+1)^2) = x^2 + 2*x +1); (%o2) TRUE (%i3) is( equal ((x+1)^2, x^2 + 2*x +1)); (%o3) TRUE
(x+1)^2 ュ絮сx^2+2*x+1 絖≪違c = хс is () FALSE 菴expand () = 綏莨冴絮絖≪ is () TRUE 菴筝 equal x ゃ勈昇綏莨冴膈у≪違c is () TRUE 菴
鴻荀>, >=, <, <= = 篁臥сequal () 篁臥с
assume (n = m); 綵≪荐宴篌若篋сn 絖≪c m 絖≪сassume (equal(n, m)); 純с
阪ュ
荐
絲乗援茵c荐蚊save("test.maxima",all); с茯粋昭loadfile("test.maxima"); <ゃ鴻<ゃс篋咲茯с
違篆絖
с違 gnuplot 阪紊眼